Как решаются энергетические проблемы человечества. Проблема энергетическая: пути решения

Как решаются энергетические проблемы человечества. Проблема энергетическая: пути решения
Как решаются энергетические проблемы человечества. Проблема энергетическая: пути решения

Введение

Всё живое на Земле нуждается в энергии поэтому, вопрос энергетики - одна из важнейших составляющих более глубокой и всеобъемлющей проблемы дальнейшего развития человечества. Однако, помимо биологических нужд, человечество по мере технического и научного прогресса становится всё более уязвимо в своей зависимости от внешних источников энергии, необходимых для производства множества товаров и услуг. В целом, энергия позволяет людям жить в меняющихся природных условиях и условиях большой плотности населения, а также контролировать своё окружение. Степень такой зависимости определяется многими факторами - начиная климатом и заканчивая уровнем жизни в данной стране: очевидно, что чем комфортнее человек делает свою жизнь, тем больше он зависит от внешних источников энергии.

Проблема обеспечения человечества энергией. От истоков до наших дней

энергетика экономика экологический анропогенный

Человек с момента своего появления нуждался в энергетических ресурсах. На раннем этапе развития он удовлетворял эту потребность через пищу. Но с развитием человечества росли его энергетические потребности и расширялись возможности их удовлетворения. На первых этапах развития цивилизации использовались первичные природные энергетические ресурсы - древесина, затем ископаемый уголь. Постепенно начинает использоваться энергия ветра и воды. Примитивные ветряные двигатели (ветряные мельницы) появились еще 2 тысячи лет назад. Природный битум начал использоваться 1 тысячу лет назад. Первые нефтяные скважины появились в XVII веке, а в середине XIX века началась промышленная добыча нефти и газа. В эпоху индустриализации потребность в энергетических ресурсах резко увеличивается, но расширяются и возможности человечества: началось производство электроэнергии с использованием гидроресурсов, энергии Солнца и атомной энергии. Использование энергетических ресурсов во все времена ограничивалось запасами природных энергоресурсов, возможностями человека извлекать энергию из этих энергоресурсов и последствиями их извлечения и использования.

Локальные энергетические кризисы возникали и в доиндустриальной экономике (например, в Англии XVIII в. в связи с исчерпанием лесных ресурсов и переходом на уголь). Но как глобальная проблема нехватка энергоресурсов проявилась в 70-х гг. XX в., когда разразился энергетический кризис, выразившийся в резком повышении цены на нефть (в 14,5 раза в 1972-1981 гг.), что создало серьезные трудности для мировой экономики. Хотя многие затруднения того времени были преодолены, глобальная проблема обеспечения топливом и энергией сохраняет свое значение и в наши дни.

Главной причиной возникновения глобальной энергетической проблемы следует считать быстрый рост потребления минерального топлива в XX в. Со стороны предложения он вызван открытием и эксплуатацией огромных нефтегазовых месторождений в Западной Сибири, на Аляске, на шельфе Северною моря, а со стороны спроса -- увеличением автомобильного парка и ростом объема производства полимерных материалов.

Наращивание добычи топливно-энергетических ресурсов повлекло за собой серьезное ухудшение экологической ситуации (расширение открытой добычи полезных ископаемых, добыча на шельфе и др.). А рост спроса на эти ресурсы усилил конкуренцию как стран -- экспортеров топливных ресурсов за лучшие условия продажи, так и между странами-импортерами за доступ к энергетическим ресурсам.

Вместе с тем происходит дальнейшее наращивание ресурсов минерального топлива. Под влиянием энергетического кризиса активизировались крупномасштабные геологоразведочные работы, приведшие к открытию и освоению новых месторождений энергоресурсов. Соответственно возросли и показатели обеспеченности важнейшими видами минерального топлива: считается, что при современном уровне добычи разведанных запасов угля должно хватить на 325 лет. природного газа -- на 62 года, а нефти -- на 37 лет (если в начале 70-х гг. считалось, что обеспеченность мировой экономики запасами нефти не превышает 25-30 лет; разведанные запасы угля еще в 1984 г. оценивались в 1,2 трлн. т, то к концу 90-х гг. они выросли до 1,75 трлн. т).

В результате преобладавшие в 70-х гг. пессимистические прогнозы обеспеченности потребностей мировой экономики в энергоносителях (так, тогда считалось, что запасов нефти хватит не более чем на 25-30 лет) сменились оптимистическими взглядами, основанными на актуальной информации.

Человечества с каждым годом приобретает все большие масштабы. Связано это с ростом населения планеты и интенсивным развитием технологий, что обуславливает постоянно растущий уровень потребления энергоресурсов. Несмотря на использование ядерной, альтернативной и гидроэнергии, львиную долю топлива люди продолжают добывать из недр Земли. Нефть, природный газ и уголь являются невозобновляемыми природными энергетическими ресурсами, к настоящему времени их запасы уменьшились до критического уровня.

Начало конца

Глобализация энергетической проблемы человечества началась в 70-х годах прошлого столетия, когда закончилась эра дешевой нефти. Дефицит и резкое подорожание этого вида топлива спровоцировали серьезный кризис в мировой экономике. И хоть стоимость его со временем снизилась, объемы неуклонно сокращаются, поэтому энергетическая и сырьевая проблема человечества становится все острее.

К примеру, только в период с 60-х по 80-е годы ХХ века мировой объем добычи угля составил 40%, нефти - 75%, природного газа - 80% от общего объема этих ресурсов, использованных с начала столетия.

Несмотря на то что в 70-х годах начался дефицит топлива и обнаружилось, что энергетическая проблема - это глобальная проблема человечества, прогнозы не предусматривали роста его потребления. Планировалось, что объемы добычи полезных ископаемых к 2000 году возрастут в 3 раза. Впоследствии, конечно, эти планы были снижены, но в результате крайне расточительной эксплуатации ресурсов, длившейся десятилетиями, на сегодняшний день их практически не осталось.

Основные географические аспекты энергетической проблемы человечества

Одной из причин растущего дефицита топлива является утяжеление условий его добычи и, как следствие, удорожание этого процесса. Если еще несколько десятков лет назад природные богатства лежали на поверхности, то сегодня приходится постоянно увеличивать глубину шахт, газовых и нефтяных скважин. Особенно заметно ухудшились горно-геологические условия залегания энергоресурсов в старых промышленных районах Северной Америки, Западной Европы, России и Украины.

Учитывая географические аспекты энергетической и сырьевой проблем человечества, нужно сказать, что их решение заключается в расширении ресурсных рубежей. Необходимо осваивать новые районы с более легкими горно-геологическими условиями. Таким образом можно снизить себестоимость добычи топлива. При этом следует учитывать, что общая капиталоемкость добычи энергоресурсов в новых местах, как правило, намного выше.

Экономические и геополитические аспекты энергетической и сырьевой проблем человечества

Истощение запасов природного топлива стало причиной возникновения жесточайшей конкурентной борьбы в экономической, политической и геополитической сферах. Гигантские топливные корпорации занимаются разделом топливно-энергетических ресурсов и переделом сфер влияния в этой отрасли, что влечет постоянные колебания цен на мировом рынке газа, угля и нефти. Нестабильность ситуации серьезно усугубляет энергетическую проблему человечества.

Глобальная энергетическая безопасность

Это понятие вошло в обиход в начале 21-го века. Принципы стратегии такой безопасности предусматривают надежное, долгосрочное и экологически приемлемое энергоснабжение, цены на которое будут обоснованы и устраивать страны как экспортирующие, так и импортирующие топливо.

Реализация этой стратегии возможна лишь при условии устранения причин энергетической проблемы человечества и практических мер, направленных на дальнейшее обеспечение мировой экономики как традиционными видами топлива, так и энергией из альтернативных источников. Причем развитию альтернативной энергетики должно быть уделено особое внимание.

Политика энергосбережения

Во времена дешевого топлива во многих странах мира сформировалась очень ресурсоемкая экономика. Прежде всего такое явление наблюдалось в государствах, богатых минеральными ресурсами. Возглавляли этот список Советский Союз, США, Канада, Китай и Австралия. При этом В СССР объем потребления условного топлива был в несколько раз больше, чем в Америке.

Такое положение вещей требовало срочного введения политики энергосбережения в коммунально-бытовом, промышленном, транспортном и прочих секторах экономики. С учетом всех аспектов энергетической и сырьевой проблем человечества начали разрабатываться и внедряться технологии, направленные на снижение удельной энергоемкости ВВП этих стран, и перестраиваться вся экономическая структура мирового хозяйства.

Успехи и неудачи

Наиболее заметных успехов в сфере энергосбережения удалось добиться экономически развитым странам Запада. За первые 15 лет им удалось снизить энергоемкость своего ВВП на 1/3, что повлекло сокращение их доли в мировом потреблении энергоресурсов с 60 до 48 процентов. На сегодняшний день эта тенденция сохраняется, и рост ВВП на Западе опережает растущие объемы потребления топлива.

Значительно хуже обстоят дела в Центрально-Восточной Европе, Китае и странах СНГ. Энергоемкость их экономики снижается очень медленно. Но лидерами экономического антирейтинга являются развивающиеся страны. К примеру, в большинстве африканских и азиатских стран потери попутного топлива (природного газа и нефти) составляют от 80 до 100 процентов.

Реалии и перспективы

Энергетическая проблема человечества и пути ее решения сегодня волнуют весь мир. Для улучшения существующей ситуации вводятся различные технико-технологические новшества. С целью энергосбережения усовершенствуется промышленное и коммунальное оборудование, выпускаются более экономичные автомобили и т. д.

К числу первостепенных макроэкономических мероприятий относится поэтапное изменение самой структуры потребления газа, угля и нефти с перспективой увеличения доли нетрадиционных и возобновляемых энергоресурсов.

Для успешного решения энергетической проблемы человечества необходимо особое внимание уделить развитию и внедрению принципиально новых технологий, доступных на современном

Атомная энергетика

Одним из наиболее перспективных направлений в сфере энергоснабжения является В некоторых развитых странах уже введены в эксплуатацию атомные реакторы нового поколения. Ученые-ядерщики сегодня опять активно обсуждают тему реакторов, работающих на быстрых нейронах, которые, как когда-то предполагалось, станут новой и значительно более эффективной волной атомной энергетики. Однако их разработка была прекращена, но ныне этот вопрос снова стал актуальным.

Использование МГД-генераторов

Прямое преобразование теплоэнергии в электроэнергию без паровых котлов и турбин позволяют выполнять магнитогидродинамические генераторы. Разработка этого перспективного направления началась еще в начале 70-х годов прошлого века. В 1971 году в Москве был произведен пуск первой опытно-промышленного МГД мощностью 25000 кВт.

Главными достоинствами являются:

  • высокий КПД;
  • экологичность (отсутствуют вредные выбросы в атмосферу);
  • моментальный запуск.

Криогенный турбогенератор

Принцип работы криогенного генератора заключается в том, что ротор охлаждается за счет чего получается эффект сверхпроводимости. К бесспорным преимуществам этого агрегата относятся высокий КПД, небольшая масса и габариты.

Опытно-промышленный образец криогенного турбогенератора был создан еще в советскую эпоху, а ныне подобные разработки ведутся в Японии, США и других развитых странах.

Водород

Использование водорода в качестве топлива имеет огромные перспективы. По мнению многих специалистов, эта технология поможет решить важнейшие лобальные проблемы человечества - энергетическую и сырьевую проблему. Прежде всего водородное топливо станет альтернативой природным энергоресурсам в машиностроении. Первый был создан японской компанией «Мазда» еще в начале 90-х годов, для него был разработан новый двигатель. Эксперимент оказался довольно удачным, что подтверждает перспективность этого направления.

Электрохимические генераторы

Это топливные элементы, которые также работают на водороде. Горючее пропускают сквозь полимерные мембраны со специальным веществом - катализатором. В результате химической реакции с кислородом сам водород преобразуется в воду, выделяя химическую энергию при сгорании, которая превращается в электрическую.

Двигатели с топливными элементами отличаются максимально высоким КПД (свыше 70 %), что вдвое больше, чем у обычных силовых установок. Плюс к этому они удобны в применении, бесшумны при работе и нетребовательны к ремонту.

Еще недавно топливные элементы имели узкую сферу применения, к примеру в космических исследованиях. Но ныне работы по внедрению электрохимических генераторов активно ведутся в большинстве экономически развитых государств, первое место среди которых занимает Япония. Общая мощность этих агрегатов в мире измеряется миллионами кВт. К примеру, в Нью-Йорке и Токио уже действуют электростанции на таких элементах, а немецкий автопроизводитель «Даймлер-Бенц» первым создал рабочий прототип автомобиля с двигателем, работающим по этому принципу.

Управляемый термоядерный синтез

Уже несколько десятков лет ведутся исследования в области термоядерной энергетики. В основе атомной энергии лежит реакция деления ядер, а термоядерная базируется на обратном процессе - ядра изотопов водорода (дейтерия, трития) сливаются. В процессе ядерного сжигания 1 кг дейтерия количество выделяемой энергии превосходит в 10 миллионов раз аналогичный показатель, получаемый от угля. Результат поистине впечатляющий! Именно поэтому термоядерная энергетика считается одним из наиболее перспективных направлений в решении проблем глобального энергетического дефицита.

Прогнозы

Сегодня существуют различные сценарии развития ситуации в мировой энергетике в будущем. Согласно некоторым из них, к 2060 году глобальное энергопотребление в нефтяном эквиваленте возрастет до 20 млрд тонн. При этом по объемам потребления ныне развивающиеся страны обгонят развитые.

К середине 21-го века должен значительно уменьшиться объем ископаемых видов энергоресурсов, но увеличится доля возобновляемых, в частности ветровых, солнечных, геотермальных и приливных источников энергии.

Глобальная энергетическая проблема - это проблема обеспечения человечества топливом и энергией в настоящее время и в обозримом будущем.

Локальные энергетические кризисы возникали и в доиндустриальной экономике (например, в Англии XVIII в. в связи с исчерпанием лесных ресурсов и переходом на уголь). Но как глобальная проблема нехватка энергоресурсов проявилась в 70-х гг. XX в., когда разразился энергетический кризис, выразившийся в резком повышении цены на нефть (в 14,5 раза в 1972-1981 гг.), что создало серьезные трудности для мировой экономики . Хотя многие затруднения того времени были преодолены, глобальная проблема обеспечения топливом и энергией сохраняет свое значение и в наши дни.

Главной причиной возникновения глобальной энергетической проблемы следует считать быстрый рост потребления минерального топлива в XX в. Со стороны предложения он вызван открытием и эксплуатацией огромных нефтегазовых месторождений в Западной Сибири, на Аляске, на шельфе Северною моря, а со стороны спроса - увеличением автомобильного парка и ростом объема производства полимерных материалов.

Наращивание добычи топливно-энергетических ресурсов повлекло за собой серьезное ухудшение экологической ситуации (расширение открытой добычи полезных ископаемых, добыча на шельфе и др.). А рост спроса на эти ресурсы усилил конкуренцию как стран - экспортеров топливных ресурсов за лучшие условия продажи, так и между странами-импортерами за доступ к энергетическим ресурсам.

Обеспеченность мирового хозяйства топливно-энергетическими ресурсами

Вместе с тем происходит дальнейшее наращивание ресурсов минерального топлива. Под влиянием энергетического кризиса активизировались крупномасштабные геологоразведочные работы , приведшие к открытию и освоению новых месторождений энергоресурсов. Соответственно возросли и показатели обеспеченности важнейшими видами минерального топлива: считается, что при современном уровне добычи разведанных запасов угля должно хватить на 325 лет. природного газа - на 62 года, а нефти - на 37 лет (если в начале 70-х гг. считалось, что обеспеченность мировой экономики запасами нефти не превышает 25-30 лет; разведанные запасы угля еще в 1984 г. оценивались в 1,2 трлн т, то к концу 90-х гг. они выросли до 1,75 трлн т).

В результате преобладавшие в 70-х гг. пессимистические прогнозы обеспеченности потребностей мировой экономики в энергоносителях (так, тогда считалось, что запасов нефти хватит не более чем на 25-30 лет) сменились оптимистическими взглядами, основанными на актуальной информации.

Основные пути решения глобальной энергетической проблемы

Экстенсивный путь решения энергетической проблемы предполагает дальнейшее увеличение добычи энергоносителей и абсолютный рост энергопотребления. Этот путь остается актуальным для современной мировой экономики. Мировое энергопотребление в абсолютном выражении с 1996 по 2003 г. выросло с 12 млрд до 15,2 млрд т условного топлива. Вместе с тем ряд стран сталкивается с достижением предела собственного производства энергоносителей (Китай) либо с перспективой сокращения этого производства (Великобритания). Такое развитие событий побуждает к поискам способов более рационального использования энергоресурсов.

На этой основе получает импульс интенсивный путь решения энергетической проблемы, заключающийся прежде всего в увеличении производства продукции на единицу энергозатрат. Энергетический кризис 70-х гг. ускорил развитие ивнедрение энергосберегающих технологий , придает импульс структурной перестройке экономики. Эти меры, наиболее последовательно проводимые развитыми странами, позволили в значительной степени смягчить последствия энергетического кризиса.

В современных условиях тонна сбереженного в результате сберегающих мер энергоносителя обходится в 3-4 раза дешевле, чем тонна дополнительно добытого. Это обстоятельство явилось для многих стран мощным стимулом повышения эффективности использования энергоносителей . За последнюю четверть XX в. энергоемкость хозяйства США снизилась вдвое, а Германии - в 2,5 раза.

Под воздействием энергетического кризиса развитые страны в 70-80-х гг. провели масштабную структурную перестройку экономики в направлении снижения доли энергоемких производств. Так, энергоемкость машиностроения и особенно сферы услуг в 8-10 раз ниже, чем в ТЭК или в металлургии. Энергоемкие производства сворачивались и переводились в развивающиеся страны. Структурная перестройка в направлении энергосбережения приносит до 20% экономии топливно-энергетических ресурсов в расчете на единицу ВВП.

Важным резервом повышения эффективности использования энергии является совершенствование технологических процессов функционирования аппаратов и оборудования. Несмотря на то что это направление является весьма капиталоемким, тем не менее эти затраты в 2-3 раза меньше расходов, необходимых для эквивалентного повышения добычи (производства) топлива и энергии. Основные усилия в этой сфере направлены на совершенствование двигателей и всего процесса использования топлива.

В то же время многие государства с формирующимися рынками (Россия, Украина, Китай, Индия) продолжают развивать энергоемкие производства (черная и цветная металлургия, химическая промышленность и др.), а также использовать устаревшие технологии. Более того, в этих странах следует ожидать роста энергопотребления как в связи с повышением жизненного уровня и изменением образа жизни населения, так и с нехваткой у многих из этих стран средств на снижение энергоемкости хозяйства. Поэтому в современных условиях именно в странах с формирующимися рынками происходит рост потребления энергетических ресурсов, тогда как в развитых странах потребление сохраняется на относительно стабильном уровне. Но необходимо иметь в виду, что энергосбережение в наибольшей степени проявило себя в промышленности, но под влиянием дешевой нефти 90-х гг. слабо сказывается на транспорте.

На современном этапе и еще на долгие годы вперед решение глобальной энергетической проблемы будет зависеть от степени снижения энергоемкости экономики, т.е. от расхода энергии на единицу произведенного ВВП.

Таким образом, глобальной энергетической проблемы в ее прежнем понимании как угрозы абсолютной нехватки ресурсов в мире не существует. Тем не менее проблема обеспечения энергоресурсами сохраняется в модифицированном виде.

Проблема Мирового океана - это проблема сохранения и рационального использования его пространств и ресурсов.

В настоящее время Мировой океан как замкнутая экологическая система с трудом выдерживает во много раз усилившуюся антропогенную нагрузку, и создается реальная угроза его гибели. Поэтому глобальная проблема Мирового океана - это, прежде всего, проблема его выживания. Как сказал Тур Хейердал, «мертвый океан - мертвая планета».

Правовой аспект использования океана

Вплоть до 70-х гг. прошлого века всю деятельность в Мировом океане осуществляли в соответствии с общепризнанным принципом свободы открытого моря, под которым понимаюсь все морское пространство за пределами территориальных вод, ширина которых составляла всего 3 морские мили.

В XX в. ситуация в корне изменилась. Многие страны, прежде всего развивающиеся, в одностороннем порядке начали присваивать обширные прибрежные акватории до 200 (и даже более) морских миль от берега и распространять в их пределах свою юрисдикцию на отдельные виды морской деятельности, а некоторые страны даже объявили свой суверенитет над этими акваториями. К концу 70-х гг. о введении 200-мильных зон (их назвали экономическими зонами) объявили уже более 100 стран, в том числе и СССР.

В 1982 г. III Конференция ООН по морскому праву, принявшая соответствующую Конвенцию, подвела правовую черту под различными видами морской деятельности. Океан был объявлен «общим наследием человечества». Были официально закреплены 200-мильные исключительные экономические зоны, перекрывшие 40% площади Мирового океана, где вся хозяйственная деятельность подпадала под юрисдикцию соответствующих государств. Шельфовые зоны (даже если они превосходят по ширине экономическую зону) также подпали под юрисдикцию этих государств. Дно остальной, глубоководной части океана, богатой железо-марганцевыми конкрециями, получило статус международного района, где вся хозяйственная деятельность должна осуществляться через специально созданный Международный орган поморскому дну (International Seabed Authority), который уже поделил глубоководные районы океана между крупнейшими державами мира; определенную часть дна получил и Советский Союз. В результате принцип свободы открытого моря прекратил свое существование.

Экономический аспект использования океана

Сегодня это острейшая проблема, которая решается всем человечеством в масштабах всемирного хозяйства. ИздавнаМировой океан служит транспортной артерией . Морской транспорт обеспечивает торгово-экономические связи, на него приходится более 60% мирового грузооборота. Во второй половине XX в. бурному развитию морского транспорта способствовали формирование очень большого географического разрыва между районами производства и потребления, увеличение зависимости экономически развитых стран от поставок сырья и топлива. Однако начиная с 80-х гг. рост грузооборота морского транспорта прекратился. В настоящее время морское торговое судоходство даст более 100 млрд долл. дохода в год.

Мировой океан - кладезь природных ресурсов. Издавна человечество использовало его биологические ресурсы. В настоящее время морской рыболовный промысел дает продукции примерно на 60 млрд долл. в год. Основная часть мировой морской продукции - рыба (около 85%). В течение XX в. объемы вылова рыбы неуклонно росли. Исключение составляли годы Второй мировой войны и 70-е гг., когда дал о себе знать резкий перелов. Однако начиная с 80-х гг. рост объемов вылова восстановился. Сейчас они превышают 125 млн т в год. Следует отметить, что хотя в 80-х гг. темпы добычи морских биоресурсов были восстановлены, «качество» ресурсов заметно снизилось.

Сегодня 90% рыбы и других морских продуктов добывается в шельфовых районах. Лидером мирового улова является Китай (около 37 млн т, но более половины его улова - пресноводная рыба). Далее идут Перу (около 10 млн т), Чили, Япония, США; Россия находится на 8-м месте (чуть более 4 млн т). Дальнейшего роста добычи рыбы не предвидится, так как это может привести к необратимому подрыву биоресурсов океана.

Помимо биологических ресурсов Мировой океан обладает колоссальными минеральными богатствами. Среди них наиболее важны нефть и природный газ, добыча которых в последние десятилетия росла особо быстрыми темпами на шельфе Мирового океана; уже сегодня их добыча даст продукции более чем на 200 млрд долл. в год.

При современном техническом уровне добыча нефти идет на глубинах до 500 м,т.е. уже за пределами континентального шельфа. Соответственно растет и себестоимость «морской» нефти, особенно в арктических широтах. Именно удорожанием «морской» нефти объясняется тот факт, что в последнее десятилетие темпы добычи нефти в океане несколько снизились.

Океан также богат гидрохимическим сырьем, растворенным в водах океана: солями натрия, магния, кальция, калия, брома, йода и многих других элементов. Весьма ценными являются прибрежные россыпи тяжелых металлов, являющихся стратегическим сырьем. Другая нетронутая кладовая Мирового океана - молодые рифтовые зоны. В результате контакта с выходящим мантийным веществом вода нагревается до 50-60°С. соленость поднимается до 260%. В образовавшемся горячем рассоле содержатся ценнейшие металлы, на дне формируются сульфидные руды редких металлов, концентрация которых иногда в 10 раз больше, чем в железо-марганцевых конкрециях и уж тем более в «сухопутных» рудах.

Мировой океан - колоссальный источник возобновляемых энергетических ресурсов, однако энергия океана пока в очень малой степени поставлена на службу человеку. В то же время использование энергии морских приливов, течений, волн, градиентов температуры почти не наносит вреда окружающей среде. Подавляющая часть энергии океана неуправляема. Неисчерпаемым источником энергии является термоядерный синтез с применением дейтерия - тяжелого водорода. Количество дейтерия, содержащегося в I л морской воды, может дать столько же энергии, сколько 120 л бензина.

Введение. Энергия - проблемы роста потребления

Энергетический кризис - явление, возникающее, когда спрос на энергоносители значительно выше их предложения. Его причины могут находиться в области логистики, политики или физического дефицита.

Потребление энергии является обязательным условием существования человечества. Наличие доступной для потребления энергии всегда было необходимо для удовлетворения потребностей человека, увеличения продол-жительности и улучшения условий его жизни.
История цивилизации - история изобретения все новых и новых методов преобразования энергии, освоения ее новых источников и в конечном итоге увеличения энергопотребления.
Первый скачок в росте энергопотребления произошел, когда человек научился добывать огонь и использовать его для приготовления пищи и обогрева своих жилищ. Источниками энергии в этот период служили дрова и мускульная сила человека. Следующий важный этап связан с изобретением колеса, созданием разнообразных орудий труда, развитием кузнечного производства. К XV веку средневековый человек, используя рабочий скот, энергию воды и ветра, дрова и небольшое количество угля, уже потреблял приблизительно в 10 раз больше, чем первобытный человек. Особенно заметное увеличение мирового потребления энергии произошло за последние 200 лет, прошедшие с начала индустриальной эпохи, - оно возросло в 30 раз и достигло в 1998 г. 13.7 Гигатонн условного топлива в год. Человек индустриального общества потребляет в 100 раз больше энергии, чем первобытный человек.
В современном мире энергетика является основой развития базовых отраслей промышленности, определяющих прогресс общественного производства. Во всех промышленно развитых странах темпы развития энергетики опережали темпы развития других отраслей.
В то же время энергетика - один из источников неблагоприятного воздействия на окружающую среду и человека. Она влияет на атмосферу (потребление кислорода, выбросы газов, влаги и твердых частиц), гидросферу (потребление воды, создание искусственных водохранилищ, сбросы загрязненных и нагретых вод, жидких отходов) и на литосферу (потребление ископаемых топлив, изменение ландшафта, выбросы токсичных веществ).
Несмотря на отмеченные факторы отрицательного воздействия энергетики на окружающую среду, рост потребления энергии не вызывал особой тревоги у широкой общественности. Так продолжалось до середины 70-х годов, когда в руках специалистов оказались многочисленные данные, свидетельствующие о сильном антропогенном давлении на климатическую систему, что таит угрозу глобальной катастрофы при неконтролируемом росте энергопотребления. С тех пор ни одна другая научная проблема не привлекает такого пристального внимания, как проблема настоящих, а в особенности предстоящих изменений климата.
Считается, что одной из главных причин этого изменения является энергетика. Под энергетикой при этом понимается любая область человеческой деятельности, связанная с производством и потреблением энергии. Значительная часть энергетики обеспечивается потреблением энергии, освобождающейся при сжигании органического ископаемого топлива (нефти, угля и газа), что, в свою очередь, приводит к выбросу в атмосферу огромного количества загрязняющих веществ.
Такой упрощенный подход уже наносит реальный вред мировой экономике и может нанести смертельный удар по экономике тех стран, которые еще не достигли необходимого для завершения индустриальной стадии развития уровня потребления энергии, в том числе России. В действительности все обстоит гораздо сложнее. Помимо парникового эффекта, ответственность за который, частично лежит на энергетике, на климат планеты оказывает влияние ряд естественных причин, к числу важнейших из которых относятся солнечная активность, вулканическая деятельность, параметры орбиты Земли, автоколебания в системе атмосфера-океан. Корректный анализ проблемы возможен лишь с учетом всех факторов, при этом, разумеется, необходимо внести ясность в вопрос, как будет вести себя мировое энергопотребление в ближайшем будущем, действительно ли человечеству следует установить жесткие самоограничения в потреблении энергии с тем, чтобы избежать катастрофы глобального потепления.

Современные тенденции развития энергетики

Общепринятая классификация подразделяет источники первичной энергии на коммерческие и некоммерческие .
Коммерческие источники
энергии включают в себя твердые (каменный и бурый уголь, торф, горючие сланцы, битуминозные пески), жидкие (нефть и газовый конденсат), газообразные (природный газ) виды топлива и первичное электричество (электроэнергия, произведенная на ядерных, гидро-, ветровых, геотермальных, солнечных, приливных и волновых станциях).
К некоммерческим относят все остальные источники энергии (дрова, сельскохозяйственные и промышленные отходы, мускульная сила рабочего скота и собственно человека).
Мировая энергетика в целом на протяжении всей индустриальной фазы развития общества основана преимущественно на коммерческих энергоресурсах (около 90% общего потребления энергии). Хотя следует отметить, что существует целая группа стран (экваториальная зона Африки, Юго-Восточная Азия), многочисленное население которых поддерживает свое существование почти исключительно за счет некоммерческих источников энергии.
Различного рода прогнозы потребления энергии, базирующиеся на данных за последние 50-60 лет предполагают, что примерно до 2025 г. ожидается сохранение современного умеренного темпа роста мирового потребления энергии - около 1.5% в год и проявившая себя в последние 20 лет стабилизация мирового душевого потребления на уровне 2.3-2.4 т усл.топл./(чел.-год). После 2030 г. по прогнозу начнется медленное снижение среднемирового уровня душевого потребления энергии к 2100 г. При этом общее потребление энергии обнаруживает явную тенденцию к стабилизации после 2050 г. и даже слабого уменьшения к концу века.
Одним из важнейших факторов, учитывавшихся при разработке прогноза, является обеспеченность ресурсами мировой энергетики, базирующейся на сжигании ископаемого органического топлива.
В рамках рассматриваемого прогноза, безусловно, относящегося к категории умеренных по абсолютным цифрам потребления энергии, исчерпание разведанных извлекаемых запасов нефти и газа наступит не ранее 2050 г., а с учетом дополнительных извлекаемых ресурсов - после 2100 г. Если принять во внимание, что разведанные извлекаемые запасы угля значительно превосходят запасы нефти и газа, вместе взятые, то можно утверждать, что развитие мировой энергетики по данному сценарию обеспечено в ресурсном отношении более чем на столетие.
Вместе с тем, результаты прогнозов дают значительный разброс, что хорошо видно из подборки некоторых опубликованных данных прогнозов на 2000 г.

Таблица 5.7. Некоторые недавние прогнозы энергопотребления на 2000 г.
(в скобках - год публикации) и его действительное значение.

Прогностический центр Потребление первичной энергии,
Гт усл.топл./год
Институт атомной энергии (1987) 21.2
Международный институт прикладного системного анализа (IIASA) (1981) 20.0
Международное агентство по атомной энергии (МАГАТЭ) (1981) 18.7
Окриджская национальная лаборатория (ORNL) (1985) 18.3
Международная комиссия по изменению климата (IPCC) (1992) 15.9
Лаборатория глобальных проблем энергетики ИБРАЭ РАН-МЭИ (1990) 14.5
Действительное энергопотребление 14.3

Уменьшение энергопотребления по отношению к прогнозируемому связаны, прежде всего, с переходом от экстенсивных путей ее развития, от энергетической эйфории к энергетической политике, основанной на повышении эффективности использования энергии и всемерной ее экономии.
Поводом для этих изменений стали энергетические кризисы 1973 и 1979 годов, стабилизация запасов ископаемых топлив и удорожание их добычи, желание уменьшить обусловленную экспортом энергоресурсов зависимость экономики от политической нестабильности в мире.

Вместе с тем, говоря о потреблении энергии, следует отметить, что в постиндустриальном обществе должна быть решена еще одна основополагающая задача - стабилизация численности населения.
Современное общество, не решившее эту проблему или, по крайней мере, не предпринимающее усилий для ее решения, не может считаться ни развитым, ни цивилизованным, поскольку совершенно очевидно, что бесконтрольный рост населения ставит непосредственную угрозу существования человека как биологического вида.
Итак, потребление энергии на душу населения в мире обнаруживает явную тенденцию к стабилизации. Следует отметить, что этот процесс начался еще около 25 лет тому назад, т.е. задолго до нынешних спекуляций на глобальном изменении климата. Такое явление в мирное время наблюдается впервые с начала индустриальной эпохи и связано с массовым переходом стран мира в новую, постиндустриальную стадию развития, в которой потребление энергии на душу населения остается постоянным. Указанный факт имеет весьма важное значение, поскольку в результате и величина общего потребления энергии в мире растет гораздо более медленными темпами. Можно утверждать, что серьезное замедление темпов роста энергопотребления оказалось полной неожиданностью для многих прогнозистов.

Кризис топливных ресурсов

В начале 70-х годов страницы газет запестрели заголовками: «Энергетический кризис!», «Надолго ли хватит органического топлива?», «Конец нефтяного века!», «Энергетический хаос». Этой теме до сих пор большое внимание уделяют все средства массовой информации - печать, радио, телевидение. Основания для такой тревоги есть, ибо человечество вступило в сложный и достаточно долгий период мощного развития своей энергетической базы. Поэтому следуете просто расходовать известные сегодня запасы топлива, но расширяя масштабы современной энергетики, отыскивать новые источники энергии и развивать новые способы её преобразования.
Прогнозов о развитии энергетики сейчас очень много. Тем не менее, несмотря на улучшившуюся методику прогнозирования, специалисты, занимающиеся прогнозами, не застрахованы от просчетов, и не имеют достаточных оснований говорить о большой точности своих прогнозов для такого временного интервала, каким являются 40-50 лет.
Человек всегда будет стремиться обладать как можно большим количеством энергии, обеспечивающим движение вперед. Не всегда наука и техника дадут ему возможность получать энергию во всевозрастающих объемах. Но, как показывает историческое развитие, обязательно будут появляться новые открытия и изобретения, которые помогут человечеству сделать очередной качественный скачок и пойти к новым достижениям ещё более быстрыми шагами.
Тем не менее, пока проблема истощения энергетических ресурсов остается. Ресурсы, которыми обладает Земля, делятся на возобновляемые и невозобновляемые . К первым относятся солнечная энергия, тепло Земли, приливы океанов, леса. Они не прекратят существования, пока будут Солнце и Земля. Невозобновляемые ресурсы не восполняются природой или восполняются очень медленно, гораздо медленнее, чем их расходуют люди. Скорость образования новых горючих ископаемых в недрах Земли определить довольно трудно. В связи с этим оценки специалистов различаются более чем в 50 раз. Если даже принять самое большое это число, то все равно скорость накопления топлива в недрах Земли в тысячу раз меньше скорости его потребления. Поэтому такие ресурсы и называют невозобновляемыми. Оценка запасов и потребления основных из них приведена в табл.5.44. В таблице приведены потенциальные ресурсы. Поэтому при существующих сегодня методах добычи из них можно извлечь только около половины. Другая половина остается в недрах. Именно поэтому, часто утверждают, что запасов хватит на 120-160 лет. Большую тревогу вызывает намечающееся истощение нефти и газа, которого (по имеющимся оценкам) может хватить всего на 40-60 лет.
С углем свои проблемы. Во-первых, его транспортировка - дело весьма трудоемкое. Так в России, основные запасы угля сосредоточены на востоке, а основное потребление - в европейской части. Во-вторых, широкое использование угля связано с серьезным загрязнением атмосферы, засорением поверхности земли и ухудшением почвы.
В разных странах все перечисленные проблемы выглядят различно, но решение их почти везде было одно - внедрение атомной энергетики. Запасы уранового сырья тоже ограничены. Однако если говорить о современных тепловых реакторах усовершенствованного типа, то для них, вследствие достаточно большой их эффективности, можно считать запасы урана практически безграничными.
Так почему же люди заговорили об энергетическом кризисе, если запасов только органического топлива хватит на сотни лет, а в резерве ещё ядерное?
Весь вопрос в том, сколько оно стоит. И именно с этой стороны нужно рассматривать сейчас энергетическую проблему. в недрах земли ещё много, но их добыча Нефти, газа стоит все дороже и дороже, так как эту энергию приходится добывать из более бедных и глубоко залегающих пластов, из небогатых месторождений, открытых в необжитых, труднодоступных районах. Гораздо больше приходится и придется вкладывать средств для того, чтобы свести к минимуму экологические последствия использования органического топлива.
Атомная энергия внедряется сейчас не потому, что она обеспечена топливом на столетия и тысячелетия, а, скорее из-за экономии и сохранения на будущее нефти и газа, а также из-за возможности уменьшения экологической нагрузки на биосферу.
Существует распространенное мнение, что стоимость электроэнергии АЭС значительно ниже стоимости энергии, вырабатываемой на угольных, а в перспективе - и газовых электростанциях. Но если подробно рассмотреть весь цикл атомной энергетики (от добычи сырья до утилизации РАО, включая расходы на строительство самой АЭС), то эксплуатация АЭС и обеспечение ее безопасной работы оказываются дороже, чем строительство и работа станции такой же мощности на традиционных источниках энергии (табл.5.8 на примере экономики США).
Поэтому в последнее время все больший акцент делается на энергосберегающих технологиях и возобновляемых источниках - таких как солнце, ветер, водная стихия. Например, в Европейском союзе поставлена цель к 2010-2012 гг. получать 22% электроэнергии с помощью новых источников. В Германии, например, уже в 2001 г. энергия, производимая от возобновимых источников, была равносильна работе 8 атомных реакторов, или 3.5% всей электроэнергии.
Многие считают, что будущее принадлежит дарам Солнца. Однако, оказывается и здесь все не так просто. Пока стоимость получения электроэнергии с применением современных солнечных фотоэлектрических элементов в 100 раз выше, чем на обычных электростанциях. Однако специалисты, занимающиеся фотоэлементами, полны оптимизма, и считают, что им удастся существенно снизить их стоимость.
Точки зрения специалистов на перспективы использования возобновляемых источников энергии очень различаются. Комитет по науке и технике в Англии, проанализировав перспективы освоения таких источников энергии, пришел к выводу, что их использование на базе современных технологий пока минимум в два-четыре раза дороже строительства АЭС. Другие специалисты в различных прогнозах этим источникам энергии уже в недалеком будущем. По-видимому, источники возобновляемой энергии будут применяться в отдельных районах мира, благоприятных для их эффективного и экономичного использования, но в крайне ограниченных масштабах. Основную долю энергетических потребностей человечества должны обеспечить уголь и атомная энергетика. Правда, пока нет настолько дешевого источника, который позволил бы развивать энергетику такими быстрыми темпами, как бы этого хотелось.
Сейчас и на предстоящие десятилетия наиболее экологичным источником энергии представляются ядерные, а затем, возможно, и термоядерные редакторы. С их помощью человек и будет двигаться по ступеням технического прогресса. Будет двигаться до тех пор, пока не откроет и не освоит какой-либо другой, более удобный источник энергии.
На рис.5.38 приведен график роста мощности АЭС в мире и производства электроэнергии за 1971-2006 гг., и прогнозы развития на 2020-30 гг. Помимо упомянутых выше, несколько развивающихся стран, таких, как Индонезия, Египет, Иордания и Вьетнам, заявили о возможности создания АЭС и сделали первые шаги в этом направлении.



Рис.5.38. (наверху ) Рост мощности АЭС и производства электроэнергии за 1971-2006 гг. по данным МАГАТЭ и прогнозы мощности АЭС в Мире на 2020-2030 гг. (внизу )

Экологический кризис энергетики

Основные формы влияния энергетики на окружающую среду состоят в следующем.

  1. Основной объем энергии человечество пока получает за счет использования невозобновимых ресурсов.
  2. Загрязнение атмосферы: тепловой эффект, выделение в атмосферу газов и пыли.
  3. 3. Загрязнение гидросферы: тепловое загрязнение водоемов, выбросы загрязняющих веществ.
  4. Загрязнение литосферы при транспортировке энергоносителей и захоронении отходов, при производстве энергии.
  5. Загрязнение радиоактивными и токсичными отходами окружающей среды.
  6. Изменение гидрологического режима рек гидроэлектростанциями и как следствие загрязнение на территории водотока.
  7. Создание электромагнитных полей вокруг линий электропередач.

Согласовать постоянный рост энергопотребления с ростом отрицательных последствий энергетики, учитывая, что в ближайшее время человечество ощутит ограниченность ископаемого топлива, можно, по-видимому, двумя способами

  1. Экономия энергии. Степень влияния прогресса на экономию энергии можно продемонстрировать на примере паровых машин. Как известно, КПД паровых машин 100 лет назад составлял 3-5%, а сейчас достигает 40%. Развитие мировой экономики после энергетического кризиса 70 годов также показало, что на этом пути у человечества есть значительные резервы. Применение ресурсосберегающих и энергосберегающих технологий обеспечило значительное сокращение потребления топлива и материалов в развитых странах.
  2. Развитие экологически более чистых видов производства энергии. Решить проблему, вероятно, способно развитие альтернативных видов энергетики, особенно базирующихся на использовании возобновляемых источников. Однако пути реализации данного направления пока не очевидны. Пока возобновимые источники дают не более 20 % общемирового потребления энергии. Основной вклад в эти 20% дают использование биомассы и гидроэнергетика.

Экологические проблемы традиционной энергетики

Основная часть электроэнергии производится в настоящее время на тепловых электростанциях (ТЭС). Далее обычно идут гидроэлектростанции (ГЭС) и атомные электростанции (АЭС).

Сырьевая проблема включает в себя построение на двух уровнях - национальном и международном (глобальном) - механизма, регулирующего рациональное производство, распределение и использование сырьевых ресурсов, а также развитие технологической основы для достижения этих целей. Энергетическая проблема несет в себе необходимость сбалансированного развития структуры энергобаланса и учета пределов производства энергии, а также механизма распределения энергоресурсов. Энергетические ресурсы во всей истории цивилизации играли важную роль для ее развития. Взлет цивилизаций древности зиждился на энергетических ресурсах массы рабов (считается, что 1 кВт/ч электроэнергии эквивалентен работе человека в течение 8 ч).

Как область экономики, энергетика охватывает энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии. Она является одним из основных средств жизнеобеспечения человечества и в то же время обусловливает истощение невозобновимых природных ресурсов и примерно 50% загрязнения окружающей среды. Ресурсная ограниченность нашей планеты делает острой проблемой энергосырьевой безопасности. Действительно, если экологические перспективы цивилизации поставить в зависимость от одного фактора, отличного от «глобальных экологических благ», этим фактором будут энергетические ресурсы. Человечество постоянно использовало все новые источники энергии: первоначально уголь, затем нефть, позднее природный газ и атомную энергию. За последние полтора века применение этих источников позволило человечеству развить экономику высоких достижений при одновременном увеличении населения Земли в четыре раза.

На нефть среди разнообразных источников энергии (уголь, нефть, газ, ядерная энергия, гидроэлектростанции, энергия ветра и солнца, биоэнергия) в последнее столетие приходилось 40% используемой энергии. На второй по значимости источник энергии - газ приходилось 25%. Предположительно нефть сохранит значение ведущего источника энергии и к 2030 г.

В энергетике различают традиционную и альтернативную составляющие. Традиционная энергетика основана на получении энергии из углеводородных энергоносителей (уголь, нефть, природный газ), а также к ней относятся атомная и гидроэнергетика. Возможности этого вида энергетики ограничены исчерпаемостью энергоносителей и значительным загрязнением окружающей среды. Исключением при этом является гидроэнергия, использование которой сопровождается затоплением значительных территорий (особенно при строительстве гидростанций в равнинных условиях). Во избежание грядущих глобальных ядерных катастроф и ради выживания человечества необходимо общее комплексное снижение ядерной опасности не только путем прекращения ядерных испытаний, нераспространения ядерного оружия и высоких ядерных технологий, но и путем (может быть, в перспективе) постепенного отказа от АЭС.

В научной литературе фиксируются три подхода к использованию атомной энергии в мирных целях: 1) в одних странах (Швеция, Норвегия и др.) реализуется программа консервирования и демонтажа существующих АЭС; 2) в других (Австрия, Бельгия и др.) полностью отказались от строительства АЭС, так как они не рассматриваются более как перспективные; 3) в третьих странах (Китай, Россия) сохраняется ориентация на развитие атомной энергетики (при этом основное внимание уделяется разработке мер по обеспечению ядерной безопасности). По данным Всемирной атомной ассоциации, сегодня в мире работает 443 атомных реактора, 62 энергоблока строится и запланировано строительство еще полутора сотен. Лидер в атомной энергетике - США, здесь работают свыше сотни реакторов. Быстрее всех мирный атом развивает Китай. Пекин строит 27 реакторов, запланировано возведение 50 ядерных энергоблоков.

При выборе энергетических предпочтений следует учитывать, что весь цикл строительства, функционирования и демонтажа АЭС, включая радиоактивные отходы, представляет определенную угрозу ядерной безопасности [Глобалистика, с. 1290-12941.

Во-первых, риск подрыва ядерной безопасности (нс только локальной, но и глобальной) связан с самим процессом получения энергии. Несмотря на то что ядерное производство постоянно контролируется на всех его этапах, но определенная утечка радиоактивных загрязнений в окружающую среду все же происходит, в результате чего население подвергается непрерывному облучению малыми дозами, что ведет к возрастанию онкологических и генетических заболеваний.

Во-вторых, важно учитывать, ограниченный срок службы любой АЭС. Предполагается, что в начале XXI в. по причине устаревания будут остановлены первые крупные АЭС (стоимость этих операций равняется 50-100% затрат на их сооружение).

В-третьих, не менее сложной представляется проблема обеспечения длительного экологически безопасного хранения радиоактивных отходов.

В-четвертых, самую большую угрозу ядерной безопасности представляет возможность аварии на АЭС. К началу XXI в. зафиксировано уже более 150 аварий на АЭС с утечкой радиоактивности. Авария на АЭС «Фукусима» в Японии (2011) вновь вынесла на повестку дня вопрос безопасности мирного атома и может оказать негативное влияние на всю атомную энергетику в мире, хотя о долговременных последствиях судить еще рано. Миру нужна энергетическая альтернатива мирному атому. Безусловно, будут разработаны дополнительные нормативы по безопасности, что, в свою очередь, увеличит стоимость строительства ядерпых объектов.

Специалисты считают, что если мировое сообщество будет иметь свыше 1000 реакторов, то каждые 10 лет с большой вероятностью следует ожидать тяжелую аварию. Для обеспечения ядерной безопасности необходим эффективный международный контроль (повышается роль МАГАТЭ), особенно в условиях массовой приватизации ядерного энергетического сектора в мире, когда значительно ослабляется контроль государства над ним. В этих условиях требуется пересмотр прежних подходов к традиционным и освоение новых технологий получения энергии из альтернативных источников, которые, возможно, начнут играть в XXI в. значительную роль.

Так, Китай наращивает потребление основных источников топлива. Согласно новому пятилетнему плану развития Китая, к 2015 г. потребление газа в этой стране вырастет со 100 млрд до 250 млрд м 3 в год. Для газа на мировом энергетическом рынке наступили «золотые времена», как и для его производителей. Потребление растет во всех регионах мира, особенно в Юго-Восточной Азии. Впрочем, там же разрабатываются и новые проекты по его добыче. В Азиатско-Тихоокеанском регионе скоро появятся мощности по добыче до 90 млрд м 3 газа в год, уже строятся мощности на 60 млрд м 3 добычи. Не исключается появление в перспективе и нетипичных на сегодня источников газа. В США и Канаде уже добывают сланцевый газ. В Китае, Индонезии и Австралии находится большое количество угольного метана. Спрос на нефть как основное энергетическое сырье остается высоким. В 2010 г. Россия получила от продажи энергоносителей за рубеж около 230 млрд долл. [Современная мировая политика; Уткин].

Альтернативные источники энергии противопоставляются традиционной энергетике как более экологичные и представляют собой собирательное понятие, охватывающее возобновляемые источники энергии (тепловые насосы, ветровая энергия, солнечная энергия, энергия приливов, биотехнологические процессы). Они становятся экономически все более выгодными, поскольку стоимость солнечных батарей за последние десятилетия сократилась и ожидается продолжение этой тенденции. Развитие альтернативной энергетики стимулируют в Японии (солнечная энергетика), Бразилии (принятая программа финансовой поддержки производства этилового спирта из сахарного тростника позволила заменить этим горючим половину бензина, потребляемого автомобилями страны) и других странах.

Исторический опыт позволил выделить ряд главных узлов, которые связывают энергетику и мировую политику. Во-первых, гипертрофированность зависимости энергетики многих стран от одного-двух энергоносителей. Политические противоречия между государствами могут обостряться из-за физической нехватки источников энергии, резких колебаний цен на них, а также из-за экологических последствий используемых энергоносителей. Во-вторых, опасность большого физического объема мировой торговли энергоресурсами. Опасность заключается в уязвимости гигантской международной транспортной инфраструктуры. По каналам мировой торговли поступает около трети первичных ресурсов, в том числе 50% всей добычи сырой нефти, сотни миллионов тонн угля, десятки миллиардов кубометров природного газа. В целом протяженность магистральных нефтепроводов 27 стран (которые охватывает статистика ООН) достигает 436 тыс. км. Ежегодно по этой трубопроводной сети прокачивается более 2 млрд т нефти и нефтепродуктов. Растянутость и уязвимость международной транспортной энергетической инфраструктуры ведут к тому, что се поддержание и защита рассматриваются правительствами ряда стран как важнейшая задача.

В-третьих, выделяется еще одна группа проблем, которая связана с противоречиями между поставщиком и получателем энергоресурсов, региональными конфликтами. Возникающая из-за этого неуверенность в надежности существующих транспортных коммуникаций все чаще становится обоснованием новых военно-морских и военно-воздушных программ, военно-политических акций, проводимых на международном уровне.

В-четвертых, возрастающая потребность в энергии и одновременная трудность удовлетворения этой потребности делают энергетику предметом острой политической борьбы. Энергетический террор может стать в будущем средством угрозы демократическим реформам, правам личности, глобальному миру и безопасности.

Широкое внедрение энергосберегающих технологий и активное развитие альтернативных источников энергии с 1970-х гг. так и не избавили мир от доминирующей роли углеводородов. Более того, проблема нефтегазового дефицита приобретает угрожающие черты, периодически порождая разговоры о приближении критической точки.

Такие виды возобновляемой энергии, как солнечная, энергия ядерного синтеза, биоэнергия и энергия ветра, станут крайне важными в будущем. Однако инновации в сфере энергетики потребуют многомиллионных инвестиций, и если новые энергетические решения не будут внедрены достаточно быстро, производительность труда и связанный с ним экономический рост сократятся.

Безопасная для мира и человечества энергетика должна включать в себя три главных направления: 1) осуществление качественного скачка в деле снижения потерь при добыче, производстве, транспортировке, преобразовании и потреблении энергоносителей; 2) создание и решительное внедрение энергосберегающих технологий, машин и потребительских товаров; 3) активная разработка и внедрение возобновляемых источников энергии и энергоносителей (солнце, биомасса, реки, ветер, геотермальные источники, энергоресурсы морей и океанов).

Однако с 1973 г. соотношение между основными и неосновными источниками энергии практически не изменилось. Согласно расчетам Международного энергетического агентства (МЭЛ), незначительно оно изменится и к 2030 г. На возобновляемую, альтернативную и прочую нетрадиционную энергию по разным оценкам будет приходиться от 11,4 до 13,5% мирового энергоснабжения, при этом нефть и газ к 2030 г. будут обеспечивать более половины энергетических потребностей [Современная мировая политика; Уткин]. Поскольку сырьевая база высокоразвитых стран, их транснациональных компаний истощается, то растет вес сырьевых стран, в руках которых находится весьма важный стратегический ресурс мировой политики. Такое положение дел приводит к возрастанию потенциала противоречий и конфликтов. Его снижение требует осмотрительности и гибкости от участвующих в политике. Политическая борьба за ресурсы может значительно обостриться из-за возрастающей готовности ряда стран мира для решения своих энергетических задач полагаться на силу. В этом случае экологическая, ресурсная и в целом глобальная безопасность могут быть подорваны, что на какое-то время негативно отразится на эффективности международных усилий по реализации стратегии устойчивого развития и даже может блокировать их.